
RE[AD-A242 279 PAGE FOZM. 0704-010

HIeedquefwSe. CaoI *" .1204, Allngo. VAs4=O-M undto e Oce f fmudonvc nd ReguiesAIaffIrk. Oce of
MManqMr~ odge &WR

1. AGENCY USE ONLY (Leave Blank) 12. REPORT DATE I3. REPORT TYPE AND DATES COVERED

I Final: 29 Nov 1990 to 01 Jun 1993
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

R.R. Software, Inc., Janus/Ada 2.2.0 Unix, Northgate 386/25 Unix 3.2 (Host &
Target), 901129W1.1 1089.

6. AUTHOR(S) ±

Wright-Patterson AFB, Dayton, OH ELECTF
USA. Nov 5 199

7. PERFORMING ORGANIZATION NAME(S) AND AODRESS(ES) 8 RMING ORGANIZATION
Ada Validation Facility, Language Control Facility ASD/SCEL L RT NUMBER

Bldg. 676, Rm 135 AVF-VSR-437-0891
Wright-Patterson AFB, Dayton, OH 45433

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY

Ada Joint Program Office REPORT NUMBER
United States Department of Defense
Pentagon, Rm 3E114
Washington, D.C. 20301-3081
11. SUPPLEM ENTARY NOTES

12a. DISTRIBUTION/AVAILABIUTY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum 200 words)
R.R. Software, Inc., Janus/Ada 2.2.0 Unix, Wright-Patterson AFB, OH, Northgate 386/25 Unix 3.2 (Host & Target), ACVC
1.11.

91-15065

14. SUBJECT TERMS 15. NUMBER OF PAGES.

Ada programming language, Ada Compiler Val. Summary Report, Ada Compiler Val. 16._PRICECODE

Capability, Val. Testing, Ada Val. Office, Ada Val. Facility, ANSI/MIL-STD-1815A, AJPO. 16. PRICE CODE

17. SECURITY CLASSIFICATION 1,8. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORTI OF ABSTRACT

UNCLASSIFIED I UNCLASSIFED UNCLASSIFIED
NSN 7540-01-280-550 Standard Form 298, (Rev. 2-89)

Prescribed by ANSI Std. 239-128

AVt Control Number:AVF-VSR-437-0891
1 August 1991
90-08-02-RRS

Ada COMPILER
VALIDATION SUMMARY REPORT:

Certificate Number: 901129W1.11089
R.R. Software, Inc.

Janus/Ada 2.2.0 Unix
Northgate 386425 Unix 3.2 -> Northgate 3864,5 Unix 3.2

Prepared By:
Ada Validation Facility

ASD/SCEL
Wright-Patterson AFB OH 45433-6503

NTIS 01RA&I
D!IC TiI3 0

-Availabili
4 yC041911

Dist JSpecial

Certificate Information

The following Ada implementation was tested and determined to pass ACVC
1.11. Testing was completed on 29 November 1990.

Compiler Name and Version: Janus/Ada 2.2.0 Unix

Host Computer System: Northgate 386/25 (under SCO Unix 3.2)

Target Co6puter System: Northgate 386/25 (under SCO Unix 3.2)

Customer Agreement Number: 90-08-02-RRS

See Section 3.1 for any additional information about the testing
environment.

As a result of this validation effort, Validation Certificate
901129W1.11089 is awarded to R.R. Software, Inc. This certificate expires
on 1 June 1993.

This report has been reviewed and is approved.

Ada Validation Facility
Steven P. Wilson
Technical Director
ASD/SCEL
Wright-Patterson AFB OH 45433-6503

Ada Validation Organization
"<- Director, Computer & Software Engineering Division

Institute for Defense Analyses
Alexandria VA 22311

Ad a Joint PormOfc
Dr. Johii Solomond, Director
Department of Defense
Washington DC 20301

Declaration of Conformance

Compiler Implementor : R.R. Software, Inc.
Ada Validation Facility : Wright-Patterson AFB, Ohio 45433-6503
Ada Compiler Validation Capability (ACVC) Version : 1.11

Base Configuration

Ada Compiler Name : Janus/Ada Version : 2.2.0 Unix
Host Architecture: Northgate 386/25 Host OS & Ver.:SCO Unix 3.2
Target Architecture: Northgate 386/25 Target OS & Ver.:SCO Unix3.2

Implementor' sDeclaration

I, the undersigned, representing R.R. Software, Inc. have
implemented no deliberate extensions to the Ada Language Standard
ANSI/MIL-STD-1815A in the compiler listed in this declaration.' I
declare that R.R. Software, Inc. is the owner of record of the Ada
compiler listed above, and as such, is responsible for maintaining
said compiler in conformance to ANSI/NIL-STD-1815A. All
certificates and registration for Ada language compiler listed in
this declaration shall be made only in'the owner's corporate name.

,9hmesA- .ltewart' Date
~vice President
R.R. Software, Inc.

Owner's Declaration

I, the undersigned, representing R.R. Software, Ihc. take full
responsibility for implementation and maintenance of the Ada
compiler listed above, and agree to the public disclosure of the
final Validation Summary Report. I declare that all of the Ada
language compilers listed, and their host/target performance are
in compliance with the ANSI/MIL-STD-1815A.

Qmes A" ---
Vice President,
R.R. Software, Inc.

TABLE OF CONTENTS

CHAPTM 1 INTRODUCTION

1.1 USE OF THIS VALIDATION SUMMARY REPORT 1-
1.2 REFERENCES 1-2
1 .3 ACVC TEST CLASSES 1-2
1.4 DEFINITION OF TERMS 1-3

CHAPTER 2 IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS 2-1
2.2 INAPPLICABLE TESTS 2-1
2.3 TEST MODIFICATIONS 2-4

CHAPTER 3 PROCESSING INFORMATION

3.1 TESTING ENVIRaMENT 3-13.2 .. .3-1
3.3 TEST EXECUTION...... 3-2

APPENDIX A MACRO PARAMETERS

APPENDIX B COMPILATION SYSTEM OPTIONS

APPENDIX C APPENDIX F OF THE Ada STANDARD

CHAPTER 1

INTRODUCTION

The Ada implementation described above was tested according to the Ada
Validation Procedures [Pro90] against the Ada Standard [Ada83] using the
current Ada Compiler Validation Capability (ACVC). This Validation Summary
Report (VSR) gives an account of the testing of this Ada iwplementation.
For any technical terms used in this report, the reader is referred to
[Pro90]. A detailed description of the ACVC may be found in the current
ACVC User's Guide [UG89].

1.1 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the Ada
Certification Body may make full and free public disclosure of this report.
In the United States, this is provided in accordance with the "Freedom of
Information Act" (5 U.S.C. #552). The results of this validation apply
only to the computers, operating systems, and compiler versions identified
in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject implementation has no
nonconformities to the Ada Standard other than those presented. Copies of
this report are available to the public from the AVF which performed this
validation or from:

National Technical Information Service
5285 Port Royal Road
Springfield VA 22161

Questions regarding this report or the validation test results should be
directed to the AVF which performed this validation or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

1-1

INTRODUCTION

1.2 REFERENCES

Reference Manual for the Ada Programming Language, [Ada83]
ANSI/IL-STD-1815A, February 1983 and ISO 8652-1987.

Ada Compiler Validation Procedures, Version 2.1, [Pro90]
Ada Joint Program Office, August 1990.

[UG89] Ada Compiler Validation Capability User's Guide, 21 June 1989.

1.3 ACVC TEST CLASSES

Compliance of Ada implementations is tested by means of the ACVC. The ACVC
contains a collection of test programs structured into six test classes:
A, B, C, D, E, and L. The first letter of a test name identifies the class
to which it belongs. Class A, C, D, and E tests are executable. Class B
and class L tests are expected to produce errors at compile time and link
time, respectively.

The executable tests are written in a self-checking manner and produce a
PASSED, FAILED, or NOT APPLICABLE message indicating ths result when they
are executed. Three Ada library units, the packages REPORT and SPPRT13,
and the procedure CHECK FILE are used for this purpose. The package REPORT
also provides a set of Tdentity functions used to defeat some compiler
optimizations allowed by the Ada Standard that would circumvent a test
objective. The package SPPRT13 is used by many tests for Chapter 13 of the
Ada Standard. The procedure CHECK FILE is used to check the contents of
text files written by some of the Class C tests for Chapter 14 of the Ada
Standard. The operation of REPORT and CHECK FILE is checked by a set of
executable tests. If these units are not opirating correctly, validation
testing is discontinued.

Class B tests check that a compiler detects illegal language usage. Clags
B tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that all violations of
the Ada Standard are detected: Some of the class B tests contain legal Ada
code which must not be flagged illegal by the compiler. This behavior is
also verified.

Class L tests check that an Ada implementation correctly detects violation
of the Ada Standard involving multiple, separately compiled units. Errors
are expected at link time, and executi,n is attempted.

In some tests of the ACVC, certain macro strings have to be replaced by
implementation-specific values - for example, the largest integer. A list
of the values used for this implementation is provided in Appendix A. In
addition to these anticipated test modifications, additional changes may be
required to remove unforeseen conflicts between the tests- and
implementation-dependent characteristics. The modifications required for
this implementation are described in section 2.3.

1-2

INTRODUCTIO.

For each Ada implementation, a customized test suite is profced by the
AVF. This customization consists of making the modifi auzons described in
the preceding paragraph, removing withdrawn tests (see section 2.1) and,
possibly some inapplicable tests (see Section 2.2 and (UG891).

In order to pass an ACVC an Ada implementation must process each test of
the customized test suite according to the Ada Standard.

1.4 DEFINITION OF TERMS

Ada Compiler The software and any needed hardware that have to btx added
to a given host and target computer system to allow
transformation of Ada programs into executable orm, and
execution thereof.

Ada Compiler The means for testing compliance of Ada implementations,
Validation consisting of the test suite, the support programs, tile ACVC
Capability user's guide and the template for the validation suurary
(ACVC) report.

Ada An Ada compiler with its host computer system and its
Implementation target computer system.

Ada Joint The part of the certification body which provides policy and
Program guidance for the Ada certification system.
Office (AJPO)

Ada The part of the certification body which carries out the
Validation procedures required to establish the compliance of an Ada
Facility (AVF) implementation.

Ada The part of the certification body that provides technical
Validation guidance for operations of the Ada certification system.
Organization
(AVO)

Compliance of The ability of the implementation to pass an ACVC version.
an Ada
Implementation

Computer A functional unit, consisting of one or more computers and
System associated software, that uses common storage for all or

part of a program and also for all or part of the data
necessary for the execution of the program; executes
user-written or user-designated programs; performs
user-designated data manipulation, including arithmetic
operations and logic operations; and that can execute
programs that modify themselves during execution. A
computer system may be a stand-alone unit or may consist of
several inter-connected units.

1-3

INTRODUCTION

Conformity Fulfillment by a product, process or service, of all
requirements specified.

Customer An individual or corporate entity who enters into an
agreement with an AVF which specifies the terms and
conditions for AVF services (of any kind) to be performed.

.Declaration of A formal statement from a customer assuring that conformity
Conformance is realized or attainable on the Ada implementation for

which validation status is realized.

Host Computer A computer system where Ada source programs are transformed
System into executable form.
Inapplicable A test that contains one or more test objectives found to be

test irrelevant for the given Ada implementation.

ISO International Organization for Standardization.

LRM The Ada standard, or Language Reference Manual, published as
ANSI/MIL-STD-1815A-1983 and ISO 8652-1987. Citations from
the LRM take the form "<section>.<subsection>:<paragraph>."

Operating Software that controls the execution of programs and that
System provides services such as resource allocation, scheduling,

input/output control, and data management. Usually,
operating systems are predominantly software, but partial or
complete hardware implementations are possible.

Target A computer system where the executable form of Ada programs
Compter are executed.
System

Validated Ada The compiler of a validated Ada implementation.
Compiler

Validated Ada An Ada implementation that has been validated successfully
Implementation either by AVF testing or by registration [Pro90].

Validation The process of checking the conformity of an Ada compiler to
the Ada programming language and of issuing a certificate
for this implementation.

Withdrawn A test found to be incorrect and not used in conformity
test testing. A test may be incorrect because it has an invalid

test objective, fails to meet its test objective, or
contains erroneous or illegal use of the Ada programming
language.

1-4

CHAPTER 2

IMPLEMENTATIO DEPENDENCIES

2.1 WITHDRAWN TESTS

The following tests have been withdrawn by the x/6. The rationale for
withdrawing each test is available from either the AVO or the AVF. The
publication date for this list of withdrawn tests is 21 November 1990.

E28005C B28006C C34006D C35702A B41308B C43004A
C45114A C45346A C45612B C45651A C46022A 849008A
A74006A C74308A B83022B B83022H B83025B B83025D
B83026B C83026A C83041A B85001L C97116A C98003B
BA2011A CB7001A CB7001B CB7004A CC1223A BC1226A
CC1226B BC3009B BDlB02B BDIB06A ADIBO8A BD2AO2A
CD2A21E CD2A23E CD2A32A CD2A41A CD2A41E CD2A87A
CD2B15C BD3006A BD4008A CD4022A CD4022D CD4024B
CD4024C CD4024D CD4031A CD4051D CD5111A CD7004C
ED7005D CD7005E AD7006A CD7006E AD7201A AD7201E
CD7204B BD8002A BD8004C CD9005A CD9005B CDA201E
CE2107I CE2117A CE2117B CE2119B CE2205B CE2405A
CE3111C CE3116A CE3118A CE3411B CE3412B CE3607B
CE3607C CE3607D CE3812A CE3814A CE3902B

2.2 INAPPLICABLE TESTS

A test is inapplicable if it contains test objectives which are irrelevant
for a given Ada implementation. Reasons for a test's inapplicability may
be supported by documents issued by ISO and the AJPO known as Ada
Commentaries and commonly referenced in the format AI-ddddd. For this
implementation, the following tests were determined to be inapplicable for
the reasons indicated; references to Ada Commentaries are included as
appropriate.

2-1

IMPLEMENTATION DEPENDENCIES

The following 201 tests have floating-point type declarations requiring
more digits than SYSTE4.MAXDIGITS:

C24113L..Y (14 tests) C35705L..Y (14 tests)
C35706L..Y (14 tests) C35707L.o.Y (14 tests)
C35708L..Y (14 tests) C35802L..Z (15 tests)
C45241L..Y (14 tests) C45321L..Y (14 tests)
C45421L..Y (14 tests) C45521L..Z (15 tests)
C45524L..Z (15 tests) C45621L..Z (15 tests)
C45641L..Y (14 tests) C46012L..Z (15 tests)

The following 21 tests check for the predefined type SHORT INTEGER:

C35404B B36105C C45231B C45304B C45411B
C45412B C45502B C45503B C45504B C45504E
C45611B C45613B C45614B C45631B C45632B
B52004E C55B07B B55B09D B86001V C86006D
CD7101E

C35404D, C45231D, B86001X, C86006E, and CD7101G check for a predefined
integer type with a name other than INTEGER, LONG INTEGER, or
SHORT INTEGER.

C35702A, C35713B, C45423B, 5860OiT, and C86006H check for the predefined
type SHORTFLOAT.

C35713D and B86001Z check for a predefined floating-point type with a
name other than FLOAT, LONGFLOAT, or SHORTFLOAT.

C45531M..P (4 tests) and C45532M..P (4 tests) check fixed-point
operations for types that require a SYSTEM.MAXMANTISSA of 48 or
greater.

C45624A checks that the proper exception is raised if MACHINE OVERFLOWS
is FALSE for floating point types with digits 5. For this
implementation, MACHINE OVERFLOWS is TRUE.

C45624B checks that the proper exception is raised if MACHINE OVERFLOWS
is FALSE for floating point types with digits 6. For this
implementation, MACHINE OVERFLOWS is TRUE.

D55A03E..H (4 tests) use 31 or more levels of loop nesting which exceeds
the capacity of the compiler.

D56001B uses 65 levels of block nesting which exceeds the capacity of
the compiler.

D64005F..G (2 tests) use 10 or more levels of recursive procedure calls
nesting which exceeds the capacity of the compiler.

B86001Y checks for a predefined fixed-point type other than DURATION.

2-2

IMPLEMENTATION DEPENDENCIES

C96005B checks for values of type DURATION'BASE that are outside the
range of DURATION. There are no such values for this implementation.

LA3004A, LA3004B, EA3004C, EA3004D, CA3004E, and CA3004F check for
pragma INLINE for procedures and functions.

CD1009C uses a representation clause specifying a non-default size for a
floating-point type.

CD2A84A, CD2A84E, CD2A84I..J (2 tests), and CD2A840 use representation
clauses specifying non-default sizes for access types.

BD8001A, BD8003A, BD8004A..B (2 tests), and AD8011A use machine code
!insertions.

AD9004A uses pragma INTERFACE for overloaded subprograms; this
implementation rejects this use due to calling conventions. (See
section 2.3.)

CDA201C instantiates Unchecked Conversion with an array type with a
non-static index constraint; tHis implementation does not support
UncheckedConversion for types with non-static constraints.

The tests listed in the following table are not applicable because the
given file operations are supported for the given combination of mode
and file access imethod.

Test File Operation Mode File Access Method

CE2102D CREATE IN FILE SEQUENTIAL 10
CE2102E CREATE OUT FILE SEQUENTIAL I0
CE2102F CREATE INOUT FILE DIRECT 10
CE21021 CREATE IN FILE DIRECT-IO
CE2102J CREATE: OUT FILE DIRECT-IO
CE2102N OPEN IN FILE SEQUENTIAL 10
CE21020 RESET IN-FILE SEQUENTIAL1I0
CE2102P OPEN OUT FILE SEQUENTIALIO
CE2102Q RESET OUT-FILE SEQUENTIAL_IO
CE2102R OPEN INOUT FILE DIRECT 10
CE2102S RESET INOUT-FILE DIRECT-IO
CE2102T OPEN IN FILE DIRECT-I0
CE2102U RESET IN-FILE DIRECT 10
CE2102V OPEN OUT FILE DIR.CT-IO
CE2102W RESET OUT-FILE DIRECT-IO
CE3102E CREATE IN FILE TEXT 1?
CE3102F RESET Any Mode TEXT-IO
CE3102G DELETE TEXT 10
CE3102I CREATE OUT FILE TEXTI 0
CE3102J OPEN IN FILE TEXT-IO
CE3102K OPEN OUT FILE TEXT-IO

2-3

IMPLEENTATION DEPENDECIES

The following 16 tests check operations on sequential, direct, and text
files when multiple internal files are associated with the same external
file and one or more are open for writing; USE ERROR is raised when this
association is attempted.

CE2107B..E CE2107G..H CE2107L CD2110B CE2110D
CE2111D CE2111H CE3111B CE3111D..E CE3114B
CE3115A

EE2201D uses instantiations of package SEQUENTIAL 10 with unconstrained
array types; this implementation raises USEERROR--on the attempt to
create a file of such type.

CE2203A checks that WRITE raises USE ERROR if the capacity of the
external file is exceeded for SEQUENTIAL_10. This implementation does
not restrict file capacity.

EE2401D uses instantiations of package DIRECT 10 with unconstrained
array types; this implementation raises USE_E!ROR on the attempt to
create a file of such type.

CE2403A checks that WRITE raises USE ERROR if the capacity of the
external file is exceeded for DIRECT.-IO. This implementation does not
restrict file capacity.

CE3304A checks that USE ERROR is raised if a call to SET LINE LENGTH or
SET PAGE LENGTH specifiles a value that is inappropriate or tle external
fill. This implementation does not have inappropriate values for either
line length or page length.

2.3 TEST MODIFICATIONS

Modifications (see section 1.3) were required for 80 tests.

The following tests were split into two or more tests because this
implementation did not report the violations of the Ada Standard in the way
expected by the original tests.

B22003A B24007A B24009A B29001A B37106A B51001A
B53003A B55AOA B63001A B63001B B73004B B83003B
B83004B B83004C B83004D B83004F B83030D B83EOlC
B83EO1D B83EOlE B83EOlF B91001H BA1001A BA1001B
BA1001C BA1010A BA1010D BA1101A BA1101E BA3006A
BA3006B BA3007B BA3008A BA.3008B BA3013A BC2001D
BC2001E BC3005B BD2BO3A BD2DO3A BD4003A

2-4

IMPLEMENTATICN DEPNDECIES

C85006A..E (5 tests) were graded passed by Test Modification as directed by
the AVO. This implementation generates more object code for these tests
than it can contain in a single compilation unit. Each of these tests was
split into five equivalent subtests.

The tests below were graded passed by Test Modification as directed by the
AVO. These tests all use one of the generic support procedures,
Length Check or Enum Check (in support files LENCHECK.ADA & ENUMCHEK.ADA),
which use the generic procedure Unchecked Conversion. This implementation
rejects instantiations of Unchecked Conversion with array types that have
non-static index ranges. The AVO ruled that since this issue was not
addressed by AI-00590, which addresses required support for
Unchecked Conversion, and since AI-00590 is considered not binding under
ACVC 1.11, the support procedures could be modified to remove the use of
Unchecked Conversion. Lines 40..43, 50, and 56..58 in LENCHECK and lines
42, 43, aid 58..63 in ENUNCHEK were commented out.

D1009A CD1009I CD1009M CD1009V CD1009W CDICO3A
CDlC04D CD2A21A..C CD2A22J CD2A23A..B CD2A24A CD2A31A..c
CD2A81A CD3014C CD3014F CD3015C CD3015E..F CD3015H
CD3015K CD3022A CD4061A

BD4006A was graded inapplicable by Evaluation Modification as directed by
the AVO. This test checks that non-static values in component and
alignment clauses are rejected; but static alignment values of 8, 16, & 32
are assumed to be supported. This implementation supports only values 1 &
2; it rejects the clauses at lines 42, 48, 58, and 63, which are not marked
as errors.

AD9001B was graded passed by Processing Modification as directed by the
AVO. This test checks that, if pragma INTERFACE is supported, no bodies
are required for interfaced subprograms. This implementation requires that
some foreign bodies exist, even if the subprograms are not called. This
test was processed in an environment in which implementor-supplied foreign
bodies were present.

AD9004A was graded inapplicable by Evaluation Modification as directed by
the AVO. This test uses a single INTERFACE pragma for several overloaded
procedure and function subprograms; this implementation does not support
the pragma in such circumstances due to the calling conventions of the
interfaced language, and thus rejects the pragma.

CDA201C was graded inapplicable by Evaluation Modification as directed by
the AVO. This test instantiates Unchecked Conversion with an array type
with a non-static index constraint; this implementation does not support
Unchecked Conversion for unconstrained types and so rejects the
instantiation. The AVO ruled that various restrictions on
Unchecked Conversion may be accepted for validation under ACVC 1.11,
because AY-00590, which addresses Unchecked Conversion, did not show an ARG
consensus at the time of ACVC 1.11's release.

2-5

IMPLE1NTATICN DEPENDENCIES

CE2108B, CE2108D, and CE3112B were graded passed by Test Modification as
directed by the AVO. These tests, respectively, check that temporary files
that were created by (earlier-processed) CE2108A, CE2108C, and CE3112A are
not accessible after the completion of those tests. However, these tests
also create temporary files. This implementation gives the same names to
the temporary files in both the earlier- and later-processed tests of each
pair; thus, CE2108B, CE2108D, and CE3112B report failed, as though they
have accessed the earlier-created files. The tests were modified to remove
the code that created the (later) temporary file; these modified tests were
passed. Lines 45..64 were commented out in CE2108B and CE2108D; lines
40..48 were commented out in CE3112B.

2-6

CHAPTER 3

PROCESSING INFORMATION

3.1 TESTING ENVIRONMET

The Ada implementation tested in this validation effort is described
adequately by the information given in the initial pages of this report.

For a point of contact for technical information about this Ada
implementation system, see:

Isaac Pentinmaki
R.R. Software, Inc.
P.O. Box 1512
Madison, WI 53701

For a point of contact for sales information about this Ada implementation
system, see:

Jim Stewart
R.R. Software, Inc.
P.O. Box 1512
Madison, WI 53701

Testing of this Ada implementation was conducted at the customer's site by
a validation team from the AVF.

3.2 Sunnary Of Test Results

An Ada Implementation passes a given ACVC version if it processes each test
of the customized test suite in accordance with the Ada Programming
Language Standard, whether the test is applicable or inapplicable;
otherwise, the Ada Implementation fails the ACVC (Pro90].

3-1

PROCESSING INFORMATICN

For all processed tests (inapplicable and applicable), a result was
obtained that conforms to the Ada Programming Language Standard.

The list of items below gives the number of ACVC tests in various
categories. All tests were processed, except those that were withdrawn
because of test errors (item b; see section 2.1), those that require a
floating-point precision that exceeds the implementation's maximum
precision (item e; see section 2.2), and those that depend on the support
of a file system - if none is supported (item d). All tests passed,
except those that are listed in. sections 2.1 and 2.2 (counted in items b
and f, below).

a) Total Number of Applicable Tests 3773
b) Total Number of Withdrawn Tests 83
c) Processed Inapplicable Tests 113
d) Non-Processed I/O Tests 0
e) Non-Processed Floating-Point

Precision Tests 201

f) Total Number of Inapplicable Tests 314

g) Total Number of Tests for ACVC 1.11 4170

3.3 TEST EXECUTIN

The diskettes containing the customized test suite (see section 1.3) was
taken on-site by the validation team for processing. The contents of the
diskettes were installed onto a Northgate 386 with DOS 3.30 and then
archived for installation onto a Unisys 386 with SCO Unix. The files were
restored onto a Unisys 386 with SCO Unix and then transferred from the
Unisys 386 to the Northgate 386 running SCO Unix via the Unix Tar command.

The files were transferred from the Unisys 386 to the Northgate 386 running
SCO Unix via the Unix Tar command.

After the test files were loaded onto the host computer, the full set of
tests was processed by the Ada implementation.

The tests were compiled and linked on the host computer system, as
appropriate. The executable images were transferred to the target computer
system by the communications link described above, and run. The results
were captured on the host computer system.

3-2

PROCESSING INFORMATION

Testing was performed using command scripts provided by the customer and
reviewed by the validation team. See Appendix B for a. complete listing of
the processing options for this implementation. It also indicates the
default options. The options invoked explicitly for validation testing
during this test were:

The options used for Janus/Ada are:

-Q - Quiet error messages - suppresses user prompting on errors.
Necessary for running B-Tests; otherwise every error would have
to be responded to.

-W - Warnings off - warnings were suppressed mainly because of the
many confusing warnings the validation tests produce. Many
validation tests have intentional errors (such as an expression
which always raises an exception, use of null ranges, unreachable
code, etc.). The large volume of warnings produced made it
difficult to grade the B-Tests in particular, so they were
suppressed.

-BS - Brief Statistics. This was also used to cut the amount of output
produced by the compiler- during compile time.

All other options used their default values.

Then, all of the non-B-Tests were linked with the options:

-Q - Quiet error messages - suppresses user prompting on errors.
Necessary for running L-Tests; otherwise every error would have
to be responded to.

-T - Trim unused code - this option directs the linker to remove
unused subroutines from the result file. This can make as much
as a 30K space saving in the result file.

-B - Brief Statistics. This was also used to cut the amount of output
produced by the Linker.

All other options used their default values.

Test output, compiler and linker listings, and job logs were captured on
magnetic tape and archived at the AVF. The listings examined on-site by
the validation team were also archived.

3-3

APPENDIX A

MACRO PARAMETERS

This appendix contains the macro parameters used for customizing the ACVC.
The meaning and purpose of these parameters are explained in [UG89]. The
parameter values are presented in two tables. The first table lists the
values that are defined in terms of the maximum input-line length, which is
the value for $MAX IN LEN-also listed here. These values are expressed
here as Ada string-aggregates, where "V" represents the maximum input-line
length.

Macro Parameter Macro Value

$MAXIN LEN 200

$BIGIDI (l..V-i -> 'A', V -> '1')

$BIGID2 (l..V-1 -> 'A', V-> '2')

$BIGID3' (l..V/2 -> -A') & '3' &
(l..V-1-V/2 -> 'A')

$BIGID4 (l..V/2 -> 'A') & '4' &
(l..V-1-V/2 -> 'A')

$BIGINTLIT (I..V-3-> '0') & "298"

$BIGREAL LIT (l..V-5-> '0') & "690.0"

$BIGSTRINGI '"' & (i..V/2 -> 'A')& '"'

$BIGSTRING2 '"' & (i..V-1-V/2 => 'A') & '1' & '"'

$BLANKS (l..V-20 -> '

$MAX LEN INT BASED LITERAL
"2:" & (l..V-5*-> '0') & "11:"

$MAXLENREAL-BASEDLITERAL
"16:" & (1..V-7 -> '0') & "F.E:"

A-I

MACRO PARAMETERS

$MAXSTRING LITERAL &(..V-2 ') & "

The following table lists all of the other macro parameters and their
respective values.

Macro Parameter Macro Value

$ACCSIZE 32

$ALIGNMENT 2

$COUNTLAST 32767

$DEFAULT_MEM_SIZE 65536

$DEFAULT STOR UNIT 8

$DEFAULTSYSNAME UNIX

$DELTADOC 2#1.0#E-31

$ENTRYADDRESS (0, 16#40#)

$ENTRY ADDRESS1 (0, 16#05#)

$ENTRYADDRESS2 (0, 16#01#)

$FIELDLAST 32767

$FILETERMINATOR r I

$FIXEDNAME NOSUCHFIXEDTYPE

$FLCATNAME NOSUCHFLOATTYPE

$FORMSTRING "

$FORM_STRING2 CANNORESTRICT FILECAPACITY

$GREATERTHAN DURATION
300_000.0

$GREATER THAN DURATION BASE LAST
1- T. 0E6-

$GREATER THAN FLOAT BASE LAST
1 I.E+40

$GREATER THAN FLOAT SAFE LARGE
- -- 1.E38

A-2

MACRO PARAMETERS

$GREATER THAN SHORTFLOAT SAFE LARGE
-- 1.07308 -

$HIGH PRIORITY 0

$ILLEGALEXTERNAL FILE NAME1
/NODIRECTORY/FILENAME

$ILLEGAL_EXTERNAL FILE NAME2

$ INAPPROPRIATE_LINELENGTH
-1

$ INAPPROPRIATEPAGE_LENGTH
-1

$INCLUDE_PRAZW PRAGQA INCLUDE ("A28006DI.,AMk ,)

$INCLUDE.PGMA2 PRAGMA INCLUDE ("B28006E1.ADA")

$INTEGERFIRST -32768

$INTEGERLAST 32767

$INTEGERLASTPLUS_1 32768

$ INTERFACE LANGUAGE C

$LESSTHANDURATION -305_000.0

$LESSTHAN DURATION BASE FIRST
-1-0E6

LINE TERMINATOR ASCII.LF

$LOWPRIORITY 0,

$MACHINECODESTATMET
NULL;

$MACHINECODETYPE NOSUCHTYPE

$MANTISSADOC 31

$MAXDIGITS 15

$MAXINT 2147483647

$MAXINTPLUS_1 2147483648

$MININT -214783648

A-3

MACRO PARAMIETERS

$NAME NOSUCHINTEGERTYPE

$NAMELST UNIX

$NAME_SPECIFICATION1 /usr/ike/x2120a

$NAME_SPECIFICATION2 /usr/ike/x2120b

$NAME_SPECIFICATION3 /usr/ike/x3119a

$NEG_BASEDJNT 16#FFFFFFFF#

$NEWMEN SIZE 65536

$NEWSTORUNIT 8

$NERSYSNAME UNIX

$PAGETERMINATOR ASCII. FF

$RECORDDEFINITICN RECORD NULL; END RECORD;

$RECORD NAME NOSUCHMACHINECODETYPE

$TASKSIZE 32

$TASKSTORAGE SI ZE 512

$TICK 0.01

$VARIABLE_ADDRESS FCNDECL.SomeVar'Address

$VARIABLEADDRESS1 FCNDECL.SomeVar2'Address

$VARIABLEADDRESS2 FCNDECL. Some Var3 'Address

$YOURPRAGA, ALL_CHECKS

A-4

APPEW~IX B

COMPILATION SYSTEM OPTIONS

The compiler options of this Ada implementation are provided by the
customer and can be found in Appendix F, section F.9, page P-14.

B-1

COMPTLATIW SYSTEM OPTIMS

LIi4K OPTIONS

The linker options of this Ada implementation are provided by the customer
and can be found in Appendix F, section P.9, page F-14.

B-2

Jank Mantual

Junk Manual

The Janus/Ada hlier is used to combine a main program with srsom and
user defined compilation Units to create an executable program. Only object
code film- that is, JRIL (Janus relocatable) and SRL (specification relocatable)
filmi . created by the Janus/Ada compiler, assembler, or other compatible
products can be combined. For more information on SRL and JRL flies, we
Section 10.1 of thie compler manual. The linker only need& to be supplied
wIth the name of the object code file for the main program. itwill sarch disks
(including a swap disk, if desired) for the required units. It determines the
loading order of a * units, and finally prod uces an executable program, The
linkr Is disk based, so nny possible sized program may be linked with JUNK
It may not be possible to produce an easier to use linker.

Using the Linker

The user only needs to type the command

JLUNK 1d:1progjisnms

to run the linker. The disk name d! specifies the disk on which to look for the
main program. The prog .name is the name of the object code file for the
main program. wuhmit the .SRL or .JP.L file name extension. The result file
Is Placed Into the file with the samne naime as the main program object code,
mnd the file name extension appropriate for your system (.COM or .EX for
MS-DOS). The rsult file li pleced an the disk where the main program Is
found.

Exainpis:

JLUNK TESTPROG

*Links Testproij to Inako an exocutable piogiam.
JUNK B.QSORT

-Links Osaon (wiii will be founa on tne 8: disk)
Into all OACutakbie prograim.

This is all of the infommiAtion neededl to use the linker. More details about the
operation of the lifnker will be found on succeeding pages.

Revion 4.6

Jlnk Manual

Linker Operation

The linker operauk automatically. However, to bNer undertand the opera.
tlion of the linker options (below), a brief descripion of the linker operation
is given here.

The following disk (drive) name dtinltions are used throughout the rest of
the linker manual.

The default disk is the one currently logged in on yoursy em. This isthe disk
name which appears in the system prompt

The source disk Is the disk which i specified on Mhe command line as the.
source of the main program. Unless a different disk Is specIfied on the
cormand line, It will be the default disk.

The destination disk is the disk to which the output mecutable file will be
written. Unless a different disk is specified on the command line, Itwill be the
souzce disk.

The swa disk Is a disk specified on the command line which allows a whole
set of disks to be searched by swapping each disk Into a disk drive. Any disk
other than the destination disk may be used for this purpose There Is no
swap disk unless the swap option Is used.

In many casus. the default, source, and destination disks refer to the same
hard disk, and the swap disk is not needed.

There are two kinds of segments (memory ams) referred to In this manual.*
Physical segments ate the segments imposed by the underlying hardware. A
logical segment Is the segmenting imposed by the Janus/Ada complier and
assemblar.Eacth unit is divided Into three logical segments - code, data, and
constant. The linker's Job isio combine many logical segments Into the proper
number of physicai segments. Whenever a segment Is referred to In the rest
of this manual, it infeAns a logical segment, unless otherwise noted.

The mrappinq between physical segments and logical segments is specified
by the program's memory model. Many machines with modem architectures
allow the mapping of the many log-cal segments Into one large physical
segment. These machines require only one memory model. Other machines
(like the 8086 family) have an atchtcture which makes the mapping more
difficult. The different models generate different amounts of code, run at
different speeds, and have diliirent limits on the size of programs.

UNK-.2
Copyffht 1989, R R Seoa',,. Inc

Junk Manual

On the 8086 (and chips in the same family), the default mesmory model Will
generally cause the linker to produce a COM file. This miemory mnodel, called
.Model 0, has a maximum of 641K of code in a program. To allow the use of
more code in a program, one may use the /01 (Model 1) option In both t*A
coripler and In the linker (see below). This; option cause the linker to
produce an EXE file; the code size Is restricted then only by your operating
stystem and by the amount of memo.'y available on your machine, Note that
some versions of the Janus/Ada compler are sold without the libraries to
allow the use of Model 1.

All compilation units In a given program- must be compled with the same
memory model, aid the program Must bet linked with that same model; the
compiler atid the linker enforce this rule,

The linker operates In three phases, The first phase loads the headers of all
of the units, and ihereby determines which units are needed. This phas also
records the disks where the units are found (for later use) and creates a table
of entry points (places where other units may access this one). Th4 disks are
searched In the following order: first the source disk, then the default disk,
and than the swap disk until all of the units are found (or the linker is aborted
by the uwr).

The second phase does not use the disks at all. The table of units to load
created by the first phase is used to determine the loading order of the units
This step is necessary due to the eiaboration rules of Ada (See Section 10.5
of the compiler manual), since Janus/Ada loads units In the order in which
they are to'be elaborated. The load address of each unit Is determined In this
step The 'second phaw, tries to minimize the amount of disk swapping that
will be necessary in ihe third pnaw

The third phase reads in each unit, fixes up all external references and
relocatable Items, arid writes out the resulting executable file. (External
referimnces are usagas of Items declared outside of the unit being linked. The
linkage Information held in an external reference is replaced by actuaf
machinie addresses when It is 'frxced up')

If the swap option is niot usatd, as is usuatlly the case when comnpilig front a
hard disk, the fixing up is done without any user intervention. A prompt is
Issued each time the swap disk nieeds to be changed, with a list of the units
which shouid be on the disk Inweried. The linker tries to be friendly about
errrs in this process - it the der~dfile is not found, It just asks again for
the disk to be Inserted.

1~: ;E3
Revision 4.6

Jlizik Manual

Linker Commnand Line and Options

The linker command line looks like:

JUINK 1D:Iprognsme{/options}

The prog name is the name of the object code file (SRI. or JRL file) of the
main program, without the *,SRI:" or I.JRL" extension. (We will rfer to tus
simply as art SRI. file from here on in this manual; however, everything said
about the inain program's SRL file should be understood to apply if the main
program has geeraed a JRL [as it would If a separate specification was
provided]). Thi optional disk name D allows the source disk to be specified
as some other disk than the default disk. Tha main program's SRI. file should
be found on the source disk, The main program must be a JanuwAda
parmaterless procedure.

Note;
No file name extension i- allowed.

In general, the name ol the SRL file for the main program corresponds to the
first eight lIdt-is of 11w~ unit name for the main progrmm IR that name had
already been used by some other unit, howr then the SRI. Mie name will
vary. This can only happen it some other unit in the same program librarty
has the same first eight lets as the main program. For more Infonnallon on
Janus/Ada file naming conventions, see Section 10.1 of the Janus/Ada
compiler manual.

Many user will never need any options; most that do will need only the /01
option to allow (or the larger memory model, the /F2 option to use hardware
floating point, the /T option to reduce the size of the executable, or occasional.
ly the /F, &/Q, orf/S options. However, all the klowing options are provided
to Increase the flexibility of the linker

Chhhh Set the starting nddress of the code within the physical code
segment to hhhh (hexadeacimal). The physical code segment will
still be alloc.aed fromi zero by the operating system. The physical
code segisent cana be loaded anywhere in special applications, so
this option Mil be used veiy rarely. The resulting program will not
wor under MS-DOS.*

Dhhhh Set the Mtitng addiess of the data within the physical data
segmnent to hhhh (hexadecun). The physical datat segment will
still be allocated froineezo. The physical data segment allocation

UNK-4
Copyright 1989, it Ri Sojiwatw. Inc

Junk Manual

address cba, be chnnged by modifying JLf.86. This option wig
only b used for very special applications. The rsullng program
will not woik under MS.DOS unless JLIB86 is modified.

E Create an EXE file. This is assumed If the /01 option Is given. This
allows aluw a somewhat larger total program size If memory
model 0 is used, by using dIfferentphysical segments for thelogical
constant segmeni tind the logical code segment.

Fn Usethe class n (where n Is 0 or2) floatingpoint library. Ifa floating
point library of the specified class already exists in the link, then It
is used. Othetwise, the default floating point library Is ui . If this
option Is rot used, the class 2 library Is used if any unit was
compiled with the /F (hardware floating point) compiler option,
or otherwise contains hardware floating point opertitons; and the
class 0 libraty is used otherwise. The clases are:

0 Uiiversal! software floating poInt (FLOATOPS).

1 Not supIxrted in our Ada compilers.

2 Uniu ,eal haidware floating point (rLOAT87 on the 8086
series). Wurnuing In some versions of Janus/Ada, the
hardware of the 8087 chip can causesome surprising results
when using this option. Check Appendix Section L2 In the'
compiler manual to see If your version Is affected.

3 N t supported in our Ada compiler=.

This option a'-lows the use oi different forms of floating point sup-
poit without iecomp;ling the piogram, It also eliminates the pos-
sibility of mome than one floaftn; point ilbrry being used In a
single program (which does nor work!). An error is generated if you
try to use softwazv supxprt with units compiled with the /IF option.

L Turns on the list!ng option. The current unit being worked on Is
printed, and a table of aaldiesses for each unit is listed ori the con-
sole. These can be used for dabugging. The format of the table Is:

Pack-name Code-hhhin Data-hhhh Const-lhhh
where hhhh Is :he hcx value of the first address assigned to that
unit's : :le dow. zr ,:o i=r'.:t segment. The order given for the
unis it= tith se : n ano" hird passes of the linker specifies the

PRvidon 4.6

Jlink Maniual

elaboration oider of the various units (me Section 10.5 of the
compier manuall.

Mhhhh Set the minimum size of the Oiyuicai -code segment plus the
physical constant segment. nhe size hishh is in pararaphs (16
byte Inca emients). This forces the start of the physical det segment
to start hhhhO (hex) bytes after the start of the physical code
setenit. If this option bsused, and tte physical code segment plus
the physical constant segment size exceeds the ni-mum aime, a
warnin2 inmasnge Is produced. This option Is primarily useful for
programs which use the Chain procedure and wish to preserve
the physical data segment. The option essentially causes the
physical data segment to be In the same absolute locations In each
program which uss It.
This opio may only be used with the small memory model
(model 0).

On Use memory model ni (when n is a number between 0 and 7). his
optonIsw~d t sc~fyanalternativemre~no model to the small

model us.ed by defauit. NI ' unis linked must be mnple or
assembled with the specified memory nuodel. The memory models
are:

o Smill codle. (64K code, 64K data, 64K constants). The
default inodel, and the only one supported in the C-Pak.
This uuodal genorates a COM file, unless the /E option is
sptcatled. A COM file Is limited to 64K total for both code
and consits. If more Is recesaray, use the /E option, or
model 1.

1 Largecode. (Unlimited code, 64K data, 64K constants). The
code siz is linited by available memory. This model is
appropriate for larg~er programs. This model generates a
.ME f&t.. Progiams that use tis model will typically be
about teni to, twenty percent bigger and slower than the
equivalent program using model 0.

2.7 Unu*ed.

QProduce quiet error messages. In the normal mode of operation,
thie ink1 watits after~ evioiy error so that the use can see the error
wMthout it :irro~iin;1. off the screen. This option supprsao those
prompts.

'HNK 6
Copyrgilm 1989, K~R Softw.aw.. 1w,.

J1nk Manual

Rpath Re-direct the linker output to the specified path. the defauli is the
same p lh ns filenrdize.

•Spath Use the specified path as the swap disk. The linker will abort if all
of the libraries needed hi the current progran are not found on
the source or default'disk when no swap disk is specified. If aswap
disk is specified, a prompnt will be lssu-d.for the user to change the
swap disk. The linking may be aborted at any time during a swap.
The swip disk may not be the same as the destination disk. Any
other path inay be used This option is most useful on systems
with llmlied disk capacity (i.e. systems with less than 720K per
disk).

T Trim out umenachabie subprograms from unite that were compiled
with the compiler's /T option (we Appendix Section H.1 of the
compiler rnanuel); this can slgnifitAntly reduce the size of the
executable file, at the cost of slowing dc,vn the linking process.
Using this option invokes an extra pass, between the Alt and
second linker passes, to do thi requested trimming. We strongly
recommeiid using this option on (at least) final versions of
programs.

Uhhhh Sat the siirilng address of the consant within the physical
constant segment to hhhh hexadecimal. The physical constant
segment will still be allocated from zero. The physical constant
segment allocation address can be changed by modifying JLIB86.
This option will only be used for veny special applications. The
resulting progrrm will not work under MS-DOS unless JUBS6 is
modiied,

X ProdJuce art eXtra detalled lInk map for the program. This will be
left in a file called . p name>N. where <prog~name> Is
the name ot the main ptogram. This file is mainly for the use of
debUggers and othei future tools.

Examples:

JUNK B:TESTPROGCRD
- Link Tesiprog horn me 8: disk. and put the
- result on the D. jcsk.

JUNK C:CHAINISBIL
Link Chain from tio C. ulsk. soaMch the 8. "Osk
for needed units e,.,ving tho user to swap disks

LIHK-7
Revison 4.6

JAnk Manual

-when nuaed. Put the result onto the C. disk.
and display 'a lisaing of the link addresses.

JLINI(B:SAVEDAiA/M 8000/F2
LiUnk SaveData from the B: disk, forcing the code size
to be at least 8000) Hex bytes. Use floating point
model k2.

Error Messaggs

AUi errors except warnings are fatal. The linker will prompt th. war after an
error so that the user is sure io notice the error. (These prmpma y be tumied
off by the IQ option). Fatal errors abort the linker.

Some error niessages iiieniion a JRL file explicitly. The meaning my actually
be for a SRL file; the error messages only mention JRL for brevity.

Warnings

Some units use Floating Point Hardware, yet a Software unit was specified

The softwate anid hardware floating point should not be mixed. If
you have a floating poit co-piocessor on your target machine, we
recommernnd using only hardware floating point; otherwise, use
only software floating point.

The Code segment is larger han the minimum
(See Al option, above, foi explanation)

The unit xxxx is obsolete because yyyy WAS roCompied
it will be Ignored

The unit xixcx hias an optional body, and that body was made ob.
solete by rec~oniprilng Wvy (one of the units withied by xiooc).
Ada's rules state tfhat xio.x mnust be Ignored unla it Is recompiled.
The linker is Just lehing you know that this happened; if you really
want tv havu the body of x.?xx linked In, you should recompie It.
This sonmz n~sage cairappear as ant error if om is anything other
than an optional body.

Command Line Errors

These are all causud by an Iticonec command line'.

Command ilne Option Unknown

Jnk Manual

An option following a slash does not correspond to any legal linker
option.

-Disk Name too long
The disk name In the command line may have at most one letter.

Extenston too long
At most three letters ae; allowed In a file name extension. (This mes.
sage cone from ourstandard command line parser, In fact, the
linker does not allow any file name extenslons)

,Extensions not Allowed in Linker

The unit name given to link must not have a file name extension.

File Name too long
The file nane in the command line should be at most eight letters
long, This is no longer checked in most versions of the linker, so
this error should not occur.

Garbage oii end of command line
The linker cannot understand some or all of the command line,
Make sure that the synta, x of the command line matches that listed
in the section caiied "Linker Command Line and Options,* above.

Illegal Disk Name for Option
A disk name for ihe/ R or/S option was riot In the range A.W.

Illegal Value lot Option
The value gln with an oplion that needs one (/,10) Is illegal or
out of range.

Missing Disk Name for Option
An option requiring a di.sk tiane (/R, /S) does not have one.

Missing Value for Option
A value was exlx~cxed tollowing an option (probably /F or /0).

Revision 4.6

Julnk Mantual

Multiple Colons In File Naine
The file iana listed in the commnd line may not have multiple
colons.

Multiple Periods In 1-Ilie Nanme
The file name listed In the command line may not have multiple
periods. (This message comes fromi our standard command line,
parser. In fact. the linker does not allow file name extension, so no
periods are allowed)

No File Naine Present
No fI12 namne was found on the command line.

No Hex Number given for option
An option requiring a h~exadecimal number (IC /D, or /M) does not
have one.

No option after slash on command.11ne
There was at slash on the comimand line without anythln following
It

Paths not allowed Int Linkor
The file name In the command line may not include a path.

The Swap disk cannot te the same as the destination disk
Most oparai2U systems do not allow the changing of disks which
are being written to; therefore the destination disk cannot be used
as the swap disk.

Too many digits In hex number
A hex numbier simcilied in t he /C, /D, or itM options May only have
4 digits.

Generic Unit Errors

Illegal generic instantittcn.- In xxxx
The instantieUlin on loe number yyyy is indirectly circular.
A unit may not Ins5tantiate a unit whicn instantiates the original unit.

A generic unat cannot instantiamw a generic unit which, directy or in.
directly, causes an instaniation of the (last unit This error can
sometimes be determned at compie time. In the casw of separately
compi4ecl generics, however, It may not be detected until link time.

LINK. 10
C402111i 1989. P.11 ac.

JIMk Manual

In this case, the error inesszige gives the hm of the obiject code
We that was ptoduced when one of the offending instantiations;
was compiled, as- well ms the line number where that instant~ation
occurred.

Illegal generic instanthiation) In xxxx
Parameter number yyyy In the Instantiation an line number zzuz
must not be an unconotrained type.

Certain restrictions apply to generic actual types if the correspond-
Ing genet ic formal typ is used in certain ways In the body of the
get eric unit. In particul ir, the generic actual "yp may not be either
an uncorutrained atray subtype (see Section 3.6 of the complier
manual) ot a dl.criminated secord subtype with no defaults for the
discriminants (see Section 3.7.2 of the compiler manual) if the cor-
responding gctnarlc fon-Al type is used In any of the following
ways. as the type of a variable declaration; as the type of a com-'
ponent decla ration; or ati the full declaration of a private type This
restriction prevents using genetics to create objects that need to be
constrained but are not. This error can sometimes be deteumbin at
comipile Hinz. In the case of separately compiled generic, howeve,
It may not be. detucted until link time. In this case, the erro mes-
sage gives the following infannallon: the name of the object code
file that was produced whun the offe'nding Instantiation was corn-
plied; the paiztineter number It% the instantiation; and the line num-
ber where the insiarituutior. occurred.

Link Errors

Bad .JRL11ll.. illegal Data Element
* The JRI. file or SRL tile has% a bad data element. Recompile the IndI-

cated kid andi (if ftI!, a specification) any units that depend on It.

Cannot oe a Main Progrbil
A Main Program must be ti P~fwrietotreS3 Procedure.

The unit that ends tip bulug the main program inust be a non-
generic proc'dure3. with no pmarnetets.

Cannot use a .COM fits tor this piogram.
The smdii mtodol prcrqmn, hai too much code and constants to fit In
a COM1 I ile, (MS-DOS3 puts ct 634K limit on the *ize of COM files;
larger ores wilt not load propeily.) You should either use the
linker's XE andjor (T options if you arc not already doing so;
decrease me size o! m~e units Iperhaps by using the OPTIMIZ

LINK 11
Frvision 4.6

Jlink Manual

plagma); or recompile arnd relink the entire program with the larg
memory moodel (model 1).

Code Segment Ovoisfow - Cannot be larger then 64K<

You Wred to link a small memory model program (model 0) which
h"-nmore thn 641of code You should either use the linker's /T
option If you are not alreardy doing so; decrease the size of the
units (perhaps by using the OPTIMIZE pragma); or recompile and
tewlik the entie program with the large memory model (model 1).

Compilation Units yet to be loaded -
JUnit List)
are not found on eithor the source or default disks

The file(s) spcified wero not found on any of the diskit, and are re-
quited by this program.

Constant Segment Overflow - Cannot be larger than 84K
You tried to link a programn with mois than 64K of onftantz.
Janus/Ada only allows 64K of -constants, due to the architecture of
the 8086.

Data Segment Overflow Cannot be larger than 64K
You tried to litnk a program with more than 64K of statically alto.
catedl datka. The maximum physical segment size is 64K and the
preent version, of Janus/Ada dow not allow more than one normal
physkica data segment. If you get this error, you must mowe enough
data out of the data segment to allow room both for the statically al-
located dota and for dynamnic data, Including local variables and
objects allocated on the hcap. If the package BIGARRAY was sup-
pilied with your compler, you can use it to move some of your data
Into a spewla phusical data segment.

Depondsency Table Over how

The linker's Intenal table that says% which unibi are Interdependent
has orverflowod. If you got 1this error m~essage, your progmm is too
big for Jarus.'Ada to h~andle 1110112 piece. Consider using the
Januslad ctwinitig lrb.ury' (CHANLII3) to break'up yourpgm
into separate passe, (CI4AINUI3 is not provided with all Janus/Ada
-packages).

Disk Full
Mie output di'ik was futll.

UNK. 12
Oppr~ght 1989, H n. &3ftwaie. 1.a

Jqunk Manual

Entry Point Table Overflow
The entry point tble has uverflowed. If you get this error menage,
your piogrmit is too big for Janus/Ada to handle In one place. Con.
skier using the Janu/Ada chaining library (CHAINUB) to break
up your program Into separate passes (CHAINUB is not provided
with all Janus/Ada packages).

Error Number Incoirect
The linker tried to use an unused error message. Please contact us
with devils,

.JRL file not the samte on tri second rading
This error can only, occur If.you used two different swap disks on
the first and second reading of-a given unit's JRL file or SRL file.

Minimum Coos Option can only be used with memory model 0
The /M option is allowed only for small model programs.

Missing External item
An externa! item was not found In the entry point table. The unit
name In which the item was expected to be found Is listed with the
error message, The most likely reason for this error Is an Incorrect
compilation order. Another possible reason is that the JRL file or
SRL file for the gt'en unit has been damaged. Try recompilling the
offending unit. If that falls, then try oecompiling the antire program
(using CORDER, If you have It, to Insure that the order is correct).
If both of ihese fail, p, os contact RR Software.

Not a .JRL tile from tihe cur, ent version of Janus/Ada
The JRL or SAL version number (in the file) is not current, Recom-
pile the indicated unit and (it it is a spweification) any units that
depend on It.

Not enough RAM
This message hi-jica!,s that there Is not enough available random
access nwnror, in your imnichine to run the linker. Janus/Ada re-
quires b4K of random access memory on your machine. If you
tink you have Pnough niemcr,. but you get this message, check
whether you tire runnisig any menirorv resident programs; such
progmnis decwease the amitount of available memory on your
machine. If you have enough memory and no memory resident
programs, plbise Lo1itact k.R. Software. This message is usually
printed with the name of one of JUNK's units; that Information will

LIN i.13

RevisIon 4.6

JiInk Manual

help our support staff lIf you know how much more memory you
will need V. zun the linker.

Obsolete Units found
Some of the units that were to be linked are obsolete: that Is, some
of the. units on which they depend have been rconpiled more
recently the. they have. The offending units were listed before this
message came out. The appropriate units and any units that
depend'on them should be recompiled. If you have CORDER, the
Janus/Ada compilation order tool, you may wish to use It to recom.
pile all obsle~te units.

The following compilation units could not be loaded due to
a mutual dependency (probably caused by Elaborate pragmas)
[Unt List)
The units l1sied below (d any) may also be mutually dependent.
[Unit Usti
The mutual depentduncy must be removed.

The flist list of units shows a cycle of units that cannot be loaded.
The last unit ii the list is taquIred to be elaborated beore the first
unit In the list, end iach other unit in the list is uequired to be
elaborated befote the next unit In the list. Hence, there is no legal
elaboration order. Thw weason tfat each unit In the Is is required
to be elaborated belore another listed unit is one of the following
three reasons: the unit to be loaded fast is a speciflcatn' and other
unit I Its body; the unit to be loaded first is a specification men.
tioned in a with dcause of the other unit, or the unit to be loaded
fint is a body mentioned In an ELABORATE pragma of the other
unit. The seand list of units shows other units that wee not
loadable; these irny depend on the units In 1the cycle, or there may
be another cyrle.
In UseorV, this eror can only occur if an ELABORATE pragma is
present, sice otherwise the compilation order 9e a proper
elaboratonm order. If you get this error and you have no
EL/BORATI pr.gmas In yvur progam, then one of your SRL or
JRL files is pntbab!y iJainaged. Recompile your entire program In a
proper order

The unit xxxx Is obsulute because yyyy was recompiled
Unit xxxx dcei'nds on unit yyyy, but yyyy was compiled more
recently than xxxx Tompiie .oc= and any units that depend on
it. This Same nc.ge can appear as a waming if xxxx Ii an option-
al boxiy.

UNK.14
Coprght 198'. R R S h14

IP -

Jlnk Manual

Too many Compilation Units In one Program
One piogran imy h%-v unly 300 compilation units. If you eieed
this limit, your piogram is too big for Janus/la to handle In one
plee.. Consider using the Janus/Ada chaining libraiy (CHAINUB)
to break up your progitan Into separate passes (CHAINUB Is not
provided with all Janus/Ada packages).

Too many delotlors lorIT option
Your program iequires the [option to remove too many proce-
dures. Reduce your use of unneeded procedures, compile some of
your units without the /T compiler option, or do not use the /T op.
ton.

Too many externals for /T option
Your program has so many externi re fconces that the Janus/Ada
linker cannot keep track of all of them for the purposes of the trim-
ming done by the Ir option. Reduce the number of such referoaces
(possibly tv sup: ssli~ checks), compiie some of your unit
without the /T compiler option, or do not use the /T option.

Too many generic check recoros
Your program ha tiore d!rect and indirect generic Instantiations
than Janus/Ada can handle: too much nemoty would be needed
to chock that the histanfiations are all log, Reduce your usage of
g1nerics.

Too many relocations for [T option
The program milt being loaded has so many relocations that the
Janus/Ada linker cannot keep track of all of them for the purposes
of the hlnursing done by the I" option. Reduce the number of
relocations Lv compiling the offending unit with the optimizer on,
compiling the unit wilhout the. /T compiler option, or do not use the
/T option.

Too much Code for oni .JRL Fi!e
The l txiumumtt rtttnt (- code (tncluding constants) in one JRL
fle or SRL filJl :2000 bytes The JRL file or SRL file is probably
damaged. Recomp~le the indicaicd unit arid (if It Is a spcification)
any units that depund otn IL

[JiAo4. 15
Rhiuilon 4.6

J"n Manual

Unk Ooo has Memory Model different than specified
AN unli must be compiled with the samne enory model as that
specified. If lh!s rnesage. appears with Unit JUBS86, tn you are
not using the' Janus/Ada libictries for the correct model,- that is, your
MS-DOS swaich path is not correct

I INN 16
C*Pyuight 1989. R H Z'wwAgv. klc

APPENDIX C

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent conventions
as mentioned in Chapter 13 of the Ada Standard, and to certain allowed
restrictions on representation clauses. The implementation-dependent
characteristics of this Ada implementation, as described in this Appendix,
are provided by the customer. Unless specifically noted otherwise,
references in this Appendix are to compiler documentation and not to this
report. Implementation-specific portions of the package STANDARD, which
are not a part of Appendix F, are:

package STANDARD is
.. o.......

type INTEGER is range -32768 .. 32767;

type LONG INTEGER is range -21474838648 .. 2147483647;

type FLOAT is digits 6 range -((2.0 ** 128) - (2.0 ** 104))
((2.0 ** 128) - (2.0 ** 104);

type LONG FLOAT is digits 15 range -((2.0 ** 1024) - (2.0 ** 971))
((2.0 1024) - (2.0 ** 971));

type DURATION is delta 0.00025 range -((2.0 ** 31) - 1)/4096.0
((2.0 ** 31) -1)/4096.0;

..........

end STANDARD;

C-i

Appendix F lmLemetation Dependencies

7 lmlementation Dependencies

This appendix specifies certain system-dependent characteristics
of the Janus/Ada, version 2.2.0 386 SCO Unix compiler.

F.1 iplementation Dependent Praguas

In addition to the required Ada pragmas, Janus/Ada also provides
several others. Some of these pragmas have a textual range. Such
pragmas set some value of importance to the compiler, usually a
flag that may be On or Off. The value to be used by the compiler
at a given point in a program depends on the parameter of the
most recent relevant pragma in the text of the program. For
flags, if the parameter is the identifier On, then the flag is
on; if the parameter is the identifier Off, then the flag is off;
if no such pragma has occurred, then a default value is used.

The range of a pragma - even a pragma that usually has a textual
range - may vary if the pragma is not inside a compilation unit.
This matters only if you put multiple compilation units in a
file. The following rules apply:

1) If a pragma is inside a compilation unit, it affects
only that unit.

2) If a pragma is outside a compilation unit, it affects
.all following compilation units in the compilation.

Certain required Ada pragmas, such as INLINE, would follow
different rules; however, as it turns out, Janus/Ada ignores all
pragmas that would follow different rules.

The following system-dependent pragmas are defined by Janus/Ada.
Unless otherwise stated, they may occur anywhere that a pragma
may occur.

ALLCHECKS Takes one of'two identifiers On or Off as its
argument, and has a textual range. If the argument
is Off, then this pragma causes suppression of
arithmetic checking (like pragma ARITHCHECK - see
below), range checking (like pragma RANGECHECK -
see below), storage error checking, and
elaboration checking. If the argument is On, then
these checks are all performed as usual. Note that
pragma ALLCHECKS does not affect the status of
the DEBUG pragma; for the fastest run time code
(and the worst run time checking), both ALLCHECKS
and DEBUG shouLi be turned- Off and the pragma
OPTIMIZE (Time; should be used. Note also that
ALL CHECKS does nct affect the status of the

.Copyright 1990, R.R. Software, Inc. Revision 4.6

Appendix F: IwI mntatfton Dependencies

E NUMTABpragma. Combining check suppression using
the pragma ALLCHECKS and using the pragma
SUPPRESS may cause unexpected results; it should
not be done. However, ALL CHECKS may be combined
with the Janus/Ada pragmas ARITHCHECK and
RANGECHECK; whichever relevant pragma has occurred
most recently will determine whether a given check,
is performed. ALL CHECKS is on by default. Turning
any checks off may cause unpredictable results if
execution would have caused the corresponding
assumption to be violated. Checks should be off
only in fully debugged and tested programs. After
checks are turned off, full testing should again
be done, since any program that handles an
exception may ekpect results that will not occur
if no checking is done.

ARITHCHECK Takes one of the two identifiers On or Off as its
argument, and has a textual range. Where
ARITHCHECK is on, the compiler is permitted to
(and generally does) not generate checks for
situations where it is permitted to raise
NUMERIC ERROR; these checks include overflow
checking and checking for division by zero.
Combining check suppression using the pragma
ARITHCHECK and using the pragma SUPPRESS may cause
unexpected results; it should not be done.
However, ARITHCHECK may be combined with the
Janus/Ada pragma ALL CHECKS; whichever pragma has
occurred most recently will be effective.
ARITHCHECK is on. by default. Turning any checks
off may'cause unpredictable results if. execution
would have caused the corresponding assumption to
be violated. Checks should be off only in fully
debugged and tested programs. After checks are
turned off, full testing should again be done,
since any program that handles an exception may
expect results that will not occur if no checking
is done.

CLEANUP Takes an integer literal 'n the range 0..3 as its
argument, and has a textual range. Using this
pragma allows the Janus/Ada run-time system to be
less than meticulous about recovering temporary
memory space it uses. This pragma can allow for
smaller and faster code, but can be dangerous;
certain constructs can cause memory to be used up
very quickly. The smaller the parameter, the more
danger is permitted. A value of 3 -the default

F-2

Copyright 1990, R.R. Software, Inc. Revision 4.6

Appendix F:" ImpteienttionDependencies

value-causes the run-time System to be its usual
immaculate self. A value of 0 causes no
reclamation of temporaryspace. Values of 1.and 2
allow compromising between "cleanliness" and
speed. Using values other than 3 adds'some risk
of your program running out of memory, especially
in loops which contain certain constructs.

DEBUG Takes one of the two identifiers On or Off as its
argument, and has a textual range. This pragma
controls the generation of line number code and
procedure name code. When DEBUG is on, such code
is generated. When DEBUG is off, no line number
code or procedure names are generated. This
information is used by the walkback which is
generated after a run-time error (e.g., an
unhandled exception). The walkback is still
generated when DEBUG is off, but the line numbers
will be incorrect, and no subprogram-names will be
printed. DEBUG's initial state can be set by the
command line; if no explicit option is given, then
DEBUG is initially on. Turning DEBUG off saves
space, but causes the loss of much of Janus/Ada's
power in describing run time errors.

Notes:
DEBUG should only be turned off when the program
has no errors. The information provided on an
error when DEBUG is off is not very useful.

If DEBUG is on at the beginning of a subprogram or
package specification, then it must be on at the
end of the specification. Conversely, if DEBUG is
off at the beginning of such a specification, it
must be off at the end. If you want DEBUG to be
off for an entire compilation, then you can either
put a DEBUG pragma in the context clause of the
compilation or you can use the appropriate
compiler option.

ENUMTAB Takes one of the two identifiers On or Off as its
argument, and has a textual range. This pragma
controls the generation of enumeration tables.
Enumeration tables are used for the attributes'
IMAGE, VALUE, and WIDTH, and hence to input and
output enumeraion values. The tables are
generated when E7NUMTAB is on. The state of the
ENUMTAB flag i significant only at enumeration
type definiticn. If this pragma is used to

Copyright 1990, R.R. Software, Inc. Revision 4.6

Appndix, F: IpLementat|on Dependencies

prevent generation c* a type's enumeration tables,
then using the thrt.* mentioned attributes causes
an erroneous program, with unpredictable results;
furthermore, the type should not be used as a
generic actual discrete type, and in particular
TEXT IO.ENUMERATION I0 should not be instantiated
for ahe type. If the enumeration type is not
needed for any of these purposes, the tables,
which use a lot of space, are unnecessary. ENUMTAB
is on by default.

PAGE-LENGTH This pragma takes a single integer literal as its
argument. It says that a page break should be
added to the listing after each occurrence of the
given number of lines. The default page length is
32000, so that no page breaks are generated for
most programs. Each page starts with a header that
looks like the following:

Janus/Ada Version 2.2.0 compiling file on ate at tim

RANGECHECK Takes one of the two identifiers On or Off as its
argument, and has a textual range. Where
RANGECHECK is off, the compiler is permitted to
(and generally does) not generate checks for
situations where it is expected to raise
CONSTRAINT ERROR; these checks include null
pointer checking, discriminant checking, index
checking, array length checking, and range
checking. Combining check suppression using the
pragma RANGECHECK and using the pragma SUPPRESS
may cause unexpected results; it should not be
done. However, RANGECHECK may be combined with the
Janus/Ada pragma ALLCHECKS; whichever pragma has
occurred most recently will be effective.
RANGECHECK is on by default. Turning any checks
off may cause unpredictable results if execution
would have caused the corresponding assumption to
be violated. Checks should be off only in fully
debugged and tested programs. After checks are
turned off, full testing should again be done,
since any program that handles an exception may
expect results that will not occur if no checking
is done.

OPTIMIZER Takes one of the identifiers On or Off, or an
integer literal,* as an argument. This pragma
turns optimization on or off, either totally or
partially. It has a textual range, except that if

F-4

Copyright 1990, R.R. Software, Inc. Revision 4.6

Appendix F: Iuplementation Dependencies

the global optimizer is turned on for any part of
a compilation unit,, then it is on for the entire
compilation unit. If the identifier is On or Off,
then Janus/Ada's optimizers are turned totally on
or totally off, as appropriate. An integer
literal as an arguement causes optimization to be
turned partially on or off.

The following integer literals are meaningful as
an argument to this pragma:

1) Turns check elimination optimizations on.
2) Turns the basic block optimizer on.
3) Turns the global optimizer on. If this is on

anywhere in a compilation unit, it will be on
everywhere in that unit.

4) Turns peephole optimizations on.
5) Puts the optimizer in 'Space' optimization

mode (the default).
6) Puts the optimizer in 'Careful' optimization

mode. The can take much longer than 'Quick'
optimization, but will find'more
optimizations.

7) Puts the compiler in 'Fastest alignment'
mode. Data objects will be aligned for the
fastest performance on the target (unless
overridden by rep. clauses). This takes more
data space.

51) Turns check elimination optimizations off.
Useful for finding uninitialized variables.

52) Turns the basic block optimizer off.
53) Turns the global optimizer off.
54) Turns p@ephole optimizations off.
55) Puts the optimizer in 'Time' optimization

mode.
56) Puts the optimizer in 'Quick' optimization

mode. This is faster than 'Careful'
optimizations, and often will generate nearly
the same code.

57) Put the compiler in 'Smallest alignment'
mode. Data is only aligned when required or
when the performance penalty is severe.
Takes less data space.

Other integer 1-erals will be ignored. In
general, this =*--=a should not be mixed with the
OPTIMIZE praa==. since one has a textual arange
and the other- -'cs not; this can lead to
surprising situa::ons. However, the OPTIMIZE

Copyright 1990, R.R. Software, Inc. Revision 4.6

Appendix F: IWtemntatian Depedencies

pragma may be used inside a compilation unit for
which pragma OPTIMIZER(On) has been listed before
the start of the compilation unit.

SYSLIB This pragma tells the compiler that the current
unit is one of the standard Janus/Ada system
libraries. It takes as a parameter an integer
literal in the range i.. 15; only the values 1
through 4 are currently used. For example, system
library number 2 provides floating point support.
Do not use this pragma unless you are writing a
package to replace one of the standard Janus/Ada
system libraries.

VERBOSE Takes On or Off as its argument, and has a textual
range. VERBOSE controls the amount of output on an
error. If VERBOSE is on, the two lines preceding
the error are printed, with an arrow pointing at
the error. If VERBOSE is off, only the line number
is printed.

VERBOSE (Off):

Line 16 at Position 5
ERROR Identifier is not defined

VERBOSE (On):

15: if X - 10 then
16: Z :-0;

ERROR Identifier is not defined

The reason for this option is that an error
message with VERBOSE on can take a long time to be
generated, especially in a large program.
VERBOSE's initial condition can be set by the
compiler command line.

Pragma INTERFACE is supported for the language "C". Pragma
INTERFACE-NAME can be used to specify a name other than the Ada
one as the name of the C function called. INTERFACE NAME takes
two parameters, the Ada subprogram name, and a string
representing the C name for the function. Pragma INTERFACE-NAME
is provided so that convienient Ada names can be used as
appropriate, including operator symbols, and so that foreign
language names which are not legal Ada identifiers can be
interfaced to. If pragma-INTERFACE is used in a program,

F-6

Copyright 1990, R.R. Software, Inc. Revision 4.6

Appendix F: ImptexientationDependencies

Jbind must be used to link it, and it must be linked with the
Interface run-time.

Several required Ada pragmas may have surprising effects in
Janus/Ada. The PRIORITY pragma may only take the value 0, since
that is the only value in the range System.Priority. Specifying
any OPTIMIZE pragma turns on optimization; otherwise,
optimization is only done if specified on the compiler's command
line. The SUPPRESS pragma is ignored unless it only has one
parameter. Also, the following pragmas are always ignored:
CONTROLLED, INLINE, MEMORY SIZE, PACK, SHARED, STORAGEUNIT, and
SYSTEM NAME. Pragma CONTROLLED is always ignored because
Janus/Ada does no automatic garbage collection; thus, the effect
of pragma CONTROLLED already applies to all access types. Pragma
SHARED is similarly ignored: Janus/Ada's non-preemptive task
scheduling gives the appropriate effect to all variables. The
pragmas INLINE, PACK, and SUPPRESS (with two parameters) all
provide recommendations to the compiler; as Ada allows, the
recommendations are ignored. The pragmas MEMORYSIZE,
STORAGE UNIT, and SYSTEM NAME all attempt to make changes to
constants in the System package; in each case, Janus/Ada allows
only one value, so that the pragma is ignored.

7.2 luplezentation Dependent Attributes

Janus/Ada does not provide any attributes other than the required
Ada attributes.

7.3 Specification of the Package sysTm

The package System for Janus/Ada has the following definition.

package System is

-- System package for Janus/Ada

-- Types to define type Address.
type OffsetType is new LongInteger;
type Word is range 0 .. 65536;
for Word'Size use 16;
type Address is record

Offset : Offset Type;
Segment.: Word;

end record;
Function " (Left : Address; Right : OffsetType) Return

Address;
Function "+" (Left : OffsemtType; Right : Address) Return

Address;
Function "-" (Left : Addrsss; Right : OffsetType) Return

Copyright 1990, R.R. Software, Inc. Revision 4.6

Appendix- F: Iptementatfan Dependences

Address;
Function "-" (Left, Right : Address) Return offsetType;

type Name is (UNIX);

SystemName : constant Name :- UNIX;

StorageUnit : constant := 8;
MemorySize : constant :- 65536;

-- Note: The actual memory size of a program is
-- determined dynamically; this is the maximum number
-- of bytes in the data segment.

-- System Dependent Named Numbers:
MinInt : constant :- -2147 483648;
Mai Int : constant :- 2147483_647;
Max-Digits = constant :- 15;
Max Mantissa : constant :- 31;
Fine Delta : constant :- 2#1.0#E-31;

-- equivalently, 4.656612873077392578125E-10
Tick : constant :- 0.01; -- Some machines have less

-- accuracy; for example, the IBM PC actually ticks
-- about every 0.06 seconds.

-- Other System Dependent Declarations
subtype Priority is Integer range 0..0;

type Byte is range 0 .. 255;
for Byte'Size use 8;

end System;

The type Byte in the System package corresponds to the 8-bit
machine byte. The type Word is a 16-bit Unsigned Integer type,
corresponding to a machine word.

1.4 Restrictions on Representation Clauses

A length clause that specifies T'SIZE has the following
restrictions:

If T is a discrete type, or a fixed point type, then the
size expression can given any value between 1 and 32 bits
(subject, of course, to allowing enough bits for every
possible value). Signed and unsigned representations are
supported.

r-8
Copyright 1990, R.R. Software, Inc. Revision 4.6,

Appendix F: luptementation Dependencis

If.T is a floating point type, sizes of 32 and 64 bits are
supported (corresponding to Float and LongFloat
respectively).

If T is an array or record type, the expression must give
enough room to represent all of the components of the type
in their object representation. This can be smaller than
the default size of the type.

If T is an access type or task type, the expression must
give the default size for T.

A length clause that specifies T'STORAGESIZE for an access type
is supported.

Any integer value can be specified. STORAGEERROR will be raised
if the value is larger than available memory; no, space will be
allocated if the value is less than or equal to zero.

A length clause that specifies T'STORAGESIZE for a task type T
is supported. Any integer value can be specified. Values
smaller than 256 will be rounded up to 256 (the minimum
*T'StorageSize), as the Ada standard does not allow raising an
exception in this case.

A length clause that specifies T'SMALL for a fixed point type
must give a value (subject to the Ada restrictions) in the range

2.0 ** (-99) .. 2.0 ** 99,

inclusive.

An enumeration representation clause for a type T may give any-
integer values within the range System.MinInt .. System.Max Int.
If a size length clause is not given for the type, -the type's
size is determined from the literals given. (If all of the
literals fit in a byte, then Byte'Size is used; similarly for
Integer and LongInteger).

The expression in an alignment clause in a record representation
clause must equal 1 or 2 (to specify Byte or Word alignment
respectively). The alignment value is respected for all object
creations unless another representation clause explicitly
overrides it. (By placing a component at a non-aligned address,
for example).

A component clause may give anv desired storage location. The
size of the record is adjuster- upward if no representation clause

Copyright 1990, R.R. Software, Inc. Revision 4.6

Appendix F: imptementation Dependencies

has been given, and more space is needed for the specified
storage location to be obeyed,.

The range for specifying the bits may specify any values within
the following limitations (assuming enough bits are allowed for
any value of the subtype):

If the component type is a discrete or fixed point type, any
value may be specified for the lower bound. The upper bound
must satisfy the equation

UB - (LB - (LB Mod System.STORAGEUNITSIZE)) <= 32.

If the component type is any other type, the lower bound
must satisfy

LB Mod System.STORAGEUNIT SIZE = 0.

The upper bound must be

UB :- LB + T'Size - 1;

Tanus/Ada supports address clauses on most objects. Address
clailpes are not allowed on parameters, generic formal parameters,
and renamed objects. The address given for an object address
cla. se may be any legal value of type System.Address. It will be
interpreted as an absolute machine address, using the segment
iart as a selector if in the protected mode. It is the user's
responsibility to ensure that the value given makes sense (i.e.,
pointAi at memory, does not overlay other objects, etc.) No other
address clauses are supported.

F.5 Iupleaentation Defined Names

Janus/Ada uses no implementation generated names.

1.6 Address Clause Expressions

The address given for an object address clause may be any legal
value of type System.Address. It will be interpreted as an
absolute machine address, using the segment part as a selector if
in the protected mode. It is the user's responsibility to ensure
that the value given makes sense (i.e., points at memory, does
not overlay other objects, etc.)

7.7 Unchecked-Conversion Restrictions

We first make the following dfinitions:

Copyright 1990, R.R. Software, Inc. Revision 4.6

Appendix F: lmptementatin Dependencies

A type or subtype is said to be a s or a simnle subtype
(respectively) if it is a scalar (sub)type, an access .(sub)type,
a task (sub)type, or if it satisfies the following two
conditions:

1) If it is an array type or subtype, then it is
constrained and its index constraint is static; and

2) If it is a composite type or subtype, then all of its
subcomponents have a simple subtype.

A (sub)type which does not meet these conditions is called non-
s . Discriminated records can be simple; variant records can

be simple. However, constraints which depend on discriminants
are non-simple (because they are non-static).

Janus/Ada imposes the following restriction on instantiations of
Unchecked Conversion: for such an instantiation to be legal, both
the source actual subtype and the target actual subtype must be
simple subtypes, and they must have the same size.

F.8 Implementation Dependenoles of I/O

The syntax of an external file name depends on the operating
system being used. Some external files do not really specify disk
files; these are called . Devices are specified by special
file names, and are treated specially by some of the I/O
routines.

The syntax of an UNIX -filename is:

[pathjfilename

where "path" is an optional path consisting of directory
names, each followed by a foreslash; "filename" is the
filename (maximum 14 characters). See your UNIX manual for a
complete description. In addition, the following special
device names are recognized:

/dev/sti UNIX standard input. The same as
Standard Input. Input is buffered by lines,
and all UNIX line editing characters may be
used. Can only be read.

/dev/sto UNIX standard output. The same as
Standard Output. Can only be written.

/dev/err UNIX standard error. The output to this
device cannot be redirected. Can only be
written.

/dev/ekbd The current terminal input device. Single
character input with echoing. Due to the

F-11

Copyright 1990, R.R. Software, Inc. Revision 4.6

Appendix F: Imlptemenaton Depe dencies

design of UNIX, this device Mr be
redirected. Can be read and written.

/dev/kbd The current terminal input device. No
character interpretation is performed', and
there is no character echo. Agaizi, the input
to this device can be redirected, so it does
not always refer to the physical keyboard.

The UNIX device files may also be used.

The UNIX I/O system will do a search of the default search
path (set by the environment PATH variable) if the following
conditions are met:

1) No path is present in the file name; and

2) The name is not that of a device.

Alternatively, you may think of the search being done if the
file name does not contain any of the characters ':' or",/'.

The default search path cannot be changed while the program
is running, as the-path is copied by the Janus/Ada program
when it starts running.

Note:
Creates will never cause a path search as they must work in
the current directory.

Upon normal completion of a program, any open external files are
closed. Nevertheless, to provide portability, we recommend
explicitly closing any files that are used.

Sharing external files between multiple file objects causes the
corresponding external file to be opened multiple times by'the
operating system. The effects of this are defined by-your
operating system. This external file sharing is only allowed if
all internal files associated with a single external file are
opened only for reading (mode InFile), and no internal file is
Created. Use Error is raised if these requirements are violated.
A Reset to a writing mode of a file already opened for reading
also raise Use Error if the external file also is shared by
another internal file.

Binary I/O of values of access types will give meaningless
results and should not be done. Binary I/O of types which' are
not simple types (see definition in Section F.7, above) will
raise UseError when the file is opened. Such types require

:-12

Copyright 1990, R.R. Software, Inc. Revision 4.6

Appendix F: Imptefntation DependenciS

specification of the block size in the form, a capability which-
.is not yet supported.

The form parameter for Sequential1 and DirectIO is always
expected to be the null string.

The type Count in the generic package Direct IO is defined to
have the range 0 .. 2_147_483647.

Ada specifies the existence of special markers called t
in a text file. Janus/Ada defines the line terminator to'be <LF>
(line feed), with or without an additional <CR> (carriage
return). The page terminator is the <FF> (form feed) character;
if it is not preceded by a <LF>, a line terminator is also
assumed.

The file terminator is the end-of-file returned by the host
operating system. If no line and/or page terminator directly
precedes the file terminator, they are assumed. The only legal
form for text files is "" (the null string). All other forms
raise USE ERROR.

Output of control characters does not affect the layout that
Text_10 generates. In particular, output of a <LF> before a
New-Page does not suppress the New-Line caused by the New-Page.

The character <LF> is written to represent the line terminator.

The type Text IO.Count has the range 0 .. 32767; the type
TextIO.Field also has the range 0 .. 32767.

10 Exceptions.USE ERROR is raised if something cannot be done
because of the external file system; such situations arise when
one attempts:

- to create or open an external file for writing when the
external file is already open (via a different internal
file).

- to create or open an external file when the external
file is already open for writing (via a different
internal file).

- to reset a file to a writing mode when the external
file is already open (via a different internal file).

- to write to a full device (Write, Close);
- to create a file in a full directory (Create);
- to have more files open than the OS allows (Open,

Create);
- to open a device with an illegal mode;
- to create, reset, or delete a device;

F-13

Copyright 1990, R.R. Software, Inc. Revision 4.6

Appendix F: Impt.sntattionDepandencieu

to createa file where a protected file, (i.e., a
directory or read-only file), already exists;

- to delete a protected file;
- to use an illegal form (Open, Create); or
- to open a file for a non-simple type without specifying

the block size;
to open a device for direct I/O.

10Exceptions.DEVICE ERROR is raised if a hardware error other
than those covered by USE ERROR occurs. These situations should
never occur, but may on rare occasions. For example, DEVICE-ERROR
is raised when:

- a file is not found in a Close or a Delete;
- a seek error occurs on a direct Read or Write; or
- a seek error occurs on. a sequential EndOfFile.

The subtypes Standard.Positive and Standard.Natural, used by some
I/O routines, have the maximum value 32767.

No package LowLevel_IO is provided.

1.9 Running the compiler and linker

The Janus/Ada compiler is invoked using the following format:

janus filename (-option)

where filename is an UNIX file name (including path) with
optional compiler options (-option).

The compiler options are:

B Brief error messages. The line in error is not printed
(equivalent to turning off pragma VERBOSE).

BS Brief statistics. Few compiler statistics are printed.

D Don't generate debugging code (equivalent to turning
off pragma DEBUG)

F_ Use in-line 80387 instructions for Floating point
operations. By default the compiler generates library
calls for floating point operations. The 80387 may be
used to execute the library calls. A floating point
support library is still required, evn though this
option is

used.

C-14
Copyright I990, R.R. Software, In. Revision 4.6

Appendix F: tepLmntatifo Dependo cie

L Create a listing file with name filename.PRN on the
same disk as filename. The listing file will be a
listing of only the last compilation unit in a file.

Ox Object code memory model. X is 0 for the 80386 system.
other memory models arti not supported. (Since this
model 'limits' a program to 4 Gigabytes of Code and 4
Gigabytes of Data, this is not a concern). Memory
model 0 is assumed if this option is not given.

Q Quiet error messages. This option causer the compiler
not to wait for the user to interact after an error. In
the usual mode, the compiler will prompt the user after
each error to ask if the compilation should be aborted.
This option is useful if the user wants to take a
coffee break while the compiler is working, since all
user prompts are suppressed. The errors (if any) will
not stay on the screen when this option is used;
therefore, the console traffic should be sent to the
printer or to a file. Be warned that certain syntax
errors can cause the compiler to print many error
messages for each and every line in the program.

Rpath Route the SYM, SRL, and JRL files produced by the
compiler to the specified path 'path'. The default is
the same path as filename.

Spath Route Scratch files to specified path.

T Generate information which allows trimming unused
subprograms from the code. This option tells the
compiler to generate information which can be used by
the remove subprograms from the final code. This
option increases the size of the .JRL files produced.
We recommend that it be used on reusable libraries of
code (like trig. libraries or stack packages) - that is
those compilations for which it is likely that some
subprograms are not called.

W Don't print any warning messages. For more control of
warning messages, usit the following option form (Wx).

Wx Print only warnings of level less than the specified
digit 'x'. The given value of x may be from 1 to 9. The
more warnings you are willing to see, the higher the
number you should give.

X Handle eXtra symbol table information. This is for the
use of debuggers and other future tools. This option

F-15

Copyright 1990, R.R. Software, Inc. Revision 4.6

Appendix F: Iptmemntatlon Dependencies

requires large quantities of memory and"disk space, and
thus should be avoided if possible.

Z Turn on optimization. This has the same effect as if
the pragma OPTIMIZE were set to SPACE throughout your
compilation.

The default values for the command line options are:

B Error messages are verbose.
BS Statistics are verbose.
D Debug code is generated.
F Library calls are generated for floating point operations.
L No listing file is generated.
0 Memory model 0 is used.
Q The compiler prompts for abort after every error.
T No trimming code is produced.
W All warnings are printed.
X Extra symbol table information is not generated.
.Z Optimization is done only where so specified by pragmas.

Leading spaces are disregarded between the filename and the call
to JANUS. Spaces are otherwise not recommended on the command
line. The presence of blanks to separate the options will be
ignored.

Examples:
janus test-Q-L
janus test.run-W4
janus test
janus test .run -B -W-L

The compiler produces a SYM (SYMbol table information) file when
a specification is compiled, and a SRL or JRL (Specification
ReLocatable or Janus ReLocatable) file when a body is compiled.
To make an executable program, the appropriate SRL and JRL files
must be lik (combined) with the run-time libraries. This is
accomplished by running the Janus/Ada binder, JBIND.

The Janus/Ada binder is invoked using the following format:

jbind filename (-option)

Here "filename" is the name of the SRL or JRL file created when
the main program was compiled (without the .SRL or .JRL
extension) with optional linker options (-option). The filename
usually corresponds to the first ten letters of the name of your
main program. see the linker/binder manual for more detailed

F-16

Copyright 1990, R.R. Software, Inc. Revision 4.6

ApPendix F: mpten.mntationDtpendencie

directions. We summarize here, however, a few of the most
commonly used linking options:

P0 Use software floating point (the default).
F2 Use hardware (80387) floating point.
L Display lots of information about the loading process.
00 Use memory model 0 (the default); see the description of the*

/0 option in the compiler, above.
Q Use quiet error messages; i.e., don't wait for the user to

interact after an error.
B Use brief statistics.
T Trim unused subprograms from the code. This option tells

the linker to remove subprograms which are never called from
the final output file. This option reduces space usage of
the final file by as much as 30K.

Examples:
Jbind test
Jbind test -Q-L
Jbind test-L-F2

Note that if you do not have a hardware floating point chip, then
you generally will not need to use any binder options.

The output of Jbind is a standard UNIX .o file. This file must
be linked with the standard UNIX libraries using id; see your
UNIX manual for details.

F-17

Copyright 1990, R.R. Softare, Inc. Revision 4.6

